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ABSTRACT 
 

This paper develops some results regarding the economic value added and real options. 
We use Merton’s (1987) model of capital market equilibrium with incomplete 
information to introduce information costs in the pricing of real assets. This model 
allows a new definition of the cost of capital in the presence of information uncertainty. 
Using the methodology in Bellalah (2001, 2002) for the pricing of real options, we 
extend the standard models to account for shadow costs of incomplete information.   
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I. INTRODUCTION 
 
Over the last two decades, a body of academic research takes the methodology used in 
financial option pricing and applies it to real options in what is well known as real 
options theory. This approach recognizes the importance of flexibility in business 
activities. Today, options are worth more than ever because of the new realities of the 
actual economy: information intensity, instantaneous communications, high volatility, 
etc.  

Financial models based on complete information might be inadequate to capture 
the complexity of rationality in action. As shown in Merton (1987), the "true" 
discounting rate for future risky cash flows must be coherent with his simple model of 
capital market equilibrium with incomplete information. This model can be used in the 
valuation of real assets1.   

Managers are interested not only in real options, but also in the latest outgrowth 
in DCF analysis; the Economic Value Added. EVA simply means that the company is 
earning more than its cost of capital on its projects. EVA is powerful in focusing senior 
management attention on shareholder value. Its main message concerns whether the 
company is earning more than the cost of capital. It says nothing about the future and 
on the way the companies can capitalize on different contingencies. Hence, a useful 
criterion must account for both the DCF analysis and real options. The NPV and the EP 
(economic profit) ignore the complex decision process in capital investment. In fact, 
business decisions are in general implemented through deferral, abandonment, 
expansion or in series of stages. This paper accounts for the effects of information costs 
in the valuation of derivatives as in Bellalah (2001).   

The structure of the paper is as follows. Section II presents a simple framework 
for the valuation of the firm and its assets using the concept of economic value added in 
the presence of information costs. Section III develops a simple analysis for the 
valuation of real options within information uncertainty. Section IV develops a context 
for the pricing of real options in a continuous-time setting using Standard and complex 
options. In particular, we extend the model in Triantis and Hodder (1990) for the 
valuation of flexibility as a complex option within information uncertainty. Section V 
develops some simple models for the pricing of real options in a discrete time setting by 
accounting for the role of shadow costs of incomplete information. We first extend the 
Cox, Ross and Rubinstein (1979) model to account for information costs. Then, we use 
the generalization in Trigeorgis (1990) for the pricing of several complex investment 
opportunities with embedded real options.   
 

II. FIRM VALUATION UNDER INCOMPLETE INFORMATION 
 
We remind first Merton's (1987) model and the definition of the shadow costs of 
incomplete information.  
 
A.  Merton's model  
 
Merton's model may be stated as follows: 
 

mssms ]RR[RRs λβ−λ+−β=−  
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where sR : the equilibrium expected return on security S; mR : the equilibrium 
expected return on the market portfolio; R: one plus the riskless rate of interest, r; 

)mR(Var
)mR/sRcov(

=β : The beta of security S; λs: the equilibrium aggregate “shadow cost” 

for the security S ; λm: the weighted average shadow cost of incomplete information 
over all securities in the market place. 

The CAPM of Merton (1987), referred to as the CAPMI is an extension of the 
standard CAPM to a context of incomplete information. When λm = λs = 0, this model 
reduces to the standard CAPM of Sharpe (1964), Lintner (1965) and Mossin (1966).  
 
B.  Economic Value Added, EVA, and Information Costs 
 
In standard financial theory, every company's ultimate aim is to maximize shareholders' 
wealth. The maximization of value is equivalent to the maximization of long-term yield 
on shareholders' investment. Currently, EVA is the most popular Value based measure.   

A manager accepts a project with positive NPV; i.e; for which the internal rate of 
return IRR is higher than the cost of capital. With practical performance measuring, the 
rate of return to capital is used because the IRR can not be measured. However, the 
accounting rate of return is not an accurate estimate of the true rate of return. As shown 
in several studies, ROI underestimates the IRR in the beginning of the period and 
overestimates it at the end. This phenomenon is known as wrong periodizing.  

The EVA valuation technique provides the true value of the firm regardless of 
how the accounting is done. The EVA is a simply a modified version of the standard 
DCF analysis in a context where all of the adjustments in the EVA to the DCF must 
result net to zero.  

EVA can be superior to accounting profits in the measurement of value creation. 
In fact, EVA recognizes the cost of capital and, the riskiness of the company. 
Maximizing EVA can be set as a target while maximizing an accounting profit or 
accounting rate of return can lead to an undesired outcome. The weighted average cost 
of capital, WACC, is computed using Merton's (1987) model of capital market 
equilibrium with incomplete information for the cost of equity component. The WACC 
is computed using the CAPMI. Stewart (1990) defines the EVA as the difference 
between the Net operating profit after taxes (NOPAT) and the cost of capital.  EVA 
gives the same results as the discounted cash flow techniques or the Net present value 
(NPV). It can be described by one of the three equivalent formulas:  

 
EVA = NOPAT - Cost of capital x (Capital employed) 

or   
EVA = Rate of return - Cost of capital x (capital employed) 

or   
EVA = (ROI - WACC) Capital employed 

with                                        Rate of return = NOPAT/Capital, 
 
where Capital = Total balance sheet - non-interest bearing debt at the beginning of the 
year. ROI = the return on investment after taxes, i.e; an accounting rate of return.  
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The cost of capital is the WACC as in the Modigliani-Miller analysis where the 
cost of equity is defined with respect to the CAPM of Sharpe (1964), Lintner (1965) 
and Mossin (1966). In the presence of information costs, the cost of capital can be 
determined in the context of Merton's model of capital market equilibrium as described 
above. In this case, the above formulas must be used. Hence, the analysis in Stewart 
(1990) can be extended using the CAPMI of Merton (1987) rather than the standard 
CAPM in the computation of EVA. In the presence of taxes, EVA can also be 
calculated as:  

 
EVA = [NOP - ((NOP - Excess depreciation - Other increase in reserves) x (Tax rate))] 

-WACC x (Capital) 
 
where NOP is the Net operating profit.  

Stewart (1990) defines the Market Value Added, MVA, as the difference 
between a company's market and book values: 

 
MVA = Total market asset value - Capital invested 

 
When the book and the market values of debt are equal, MVA can be written as: 
  

MVA = Market value of equity - Book value of equity. 
 
The MVA can also be defined as: 
 

MVA = the present value of all future EVA. 
 
Using the above definitions, it is evident that:  

 
Market value of equity = Book value of equity + Present value of all future EVA. 

 
In this context, this formula is always equivalent to discounted cash flow and Net 

present value. Again, the cost of capital with information costs represents an 
appropriate rate for the discounting of all the future EVA. Hence, the main concepts in 
Stewart (1990) can be extended without difficulties to account for the shadow costs of 
incomplete information in the spirit of Merton's model.  
 
C.  The cost of capital, the firm's value and Information costs 
 
The cost of capital or the weighted average cost of capital, (WACC), is a central 
concept in corporate finance. It is used in the computation of the Net present value, 
NPV, and in the discounting of future risky streams. The standard analysis in 
Modigliani-Miller (1958, 1963) ignores the presence of market frictions and assumes 
that information is costless. Or, as it is well known in practice, information costs 
represent a significant component in the determination of returns from investments in 
financial and real assets. 

Merton (1987) provides a simple context to account for these costs by 
discounting future risky cash flows at a rate that accounts for these costs. In this 
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context, the cost of capital and the firm's value can be computed in an economy similar 
to that in Merton (1987). We denote respectively by:    
    D: the face value of debt,  
    B: the market value of debt,  
    S: the market value of equity,  
    O: perpetual operating earnings,  
     τ : the corporate tax rate,  
    Vu: the value of the unlevered firm,  
    V: the value of the levered firm,  
    kd : the cost of debt,  
    kb : the current market yield on the debt,  
    ke : the cost of equity or the required return for levered equity,  
    ko : the market value-weighted of these components known as the WACC,  
    ρ: the market cost of equity for an unlevered firm in the presence of incomplete 

information.  
      
 
 

Table 1 
Summary of the main results regarding the components of the costs of capital and the 

values of the levered and unlevered firms with information uncertainty 
 

No tax Corporate tax 

ρ = Su
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 with k’b = kb + λd and k’d= kd + λd. 
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Using the main results in the Modigliani and Miller analysis and Merton's λ, it is 
clear that discounting factors must account for the shadow cost of information 
regarding the firm and its assets. By adding Merton's λ in the analysis of Modigliani 
Miller in the discounting of the different streams of cash-flows for levered and 
unlevered firms, similar very simple formulas can be derived in an extended 
Modigliani-Miller-Merton context. The formulas follow directly from the analysis in 
Modigliani-Miller and the fact that future risky streams must be discounted at a rate that 
accounts for Merton's λ. The above Table presents the main results regarding the 
components of the costs of capital and the values of the levered and unlevered firms 
with information costs. 

The term λd indicates the information cost for the debt and the term λu 
corresponds to the information cost for the unlevered firm.  

These results show the components of cost of capital and the values of the firms 
in the presence of information costs. When these costs are equal to zero, this Table is 
equivalent to the results in the Modigliani-Miller analysis.  
The results show how to calculate the firm's value, the weighted average cost of capital, 
and the Net present value of future risky cash flows in the presence of information 
costs.  

The above formulas are simulated for an illustrative purpose using:  O = 2 000, 
D = 10 000, B = 10 000, S = 10 000, V = 20 000, τ = 40%, ρ = 10% and kd =5%, λu = 
0%, λd = 0%. These figures represent the standard benchmark case. The simulations 
allow appreciating the impact of information costs on the computation of the different 
values of the levered and unlevered firm and the costs of capital with corporate taxes.  
 
 
 

Table 2 
Summary of the main results regarding the components of the costs of capital and the 
values of the levered and unlevered firms with information costs: the standard case. 

O = 2000, D = 10 000, B = 10 000, S = 10 000, V = 20 000, τ = 40%, ρ = 10% and kd 
=5%, λu = 0%, λd = 0%. 

 
No tax Corporate tax 

ρ =10% ρ = 10% 

B = 10000 B = 10000 

ke =15% 
ke = 15% 

ke =15% 
ke = 15% 

Vu = 20000 
V = 20000 
S = 10000 

Vu = 20000 
V = 16000 
S = 6000 

k0 = 10% 
k0 = 10% 
k0 = 10% 

k0 = 7.5% 
k0 = 7.50% 
k0 = 7.5% 
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The fact that ke is equal to 15% in this case is consistent with the MM 
assumptions.  The effect of incomplete information on the firm value and the cost of 
capital is simulated using the following data: O = 2000, D = 10 000, B = 10 000, S = 10 
000, V = 20 000, τ = 40 %, ρ= 10 %, kd = 5 %, λu = 3 %, λd = 1 %.  

 
 
 

Table 3 
The main results for the cost of capital and the values of  
the levered and unlevered firms with information costs 

O = 2000, D = 10 000, B = 10 000, S = 10 000, V = 20 000, τ = 40%, ρ = 10%, 
 kd =5%, λu = 3%, λd = 1% 

 
No tax Corporate tax 
ρ = 13% ρ = 13% 
B = 10000 B = 10000 
ke = 26% 
ke = 26% 

ke = 26% 
ke = 26% 

Vu = 15384.62 
Vu = 15384.62 
S = 5384.62 

Vu = 9230.77 
Vu = 13230.77 
S = 3230.77 

k0 = 13% 
k0 = 13% 
k0 = 13% 

k0 = 9.07% 
k0 = 9.07% 
k0 = 9.07% 

 
 
 
The value of ke is equal to 26 % in this case. Every scenario is consistent with 

the Modigliani-Miller assumptions and the Merton's shadow cost (λ). When compared 
to the benchmark case with no information costs, we see that information costs increase 
significantly ke. These shadow costs reduce the value of the firm in the two cases: with 
no tax and with corporate tax.  
 

II. THE VALUATION OF REAL OPTIONS WITH INFORMATION 
COSTS IN A CONTINUOUS-TIME SETTING 

 
Several models in financial economics are proposed to deal with the ability to delay 
irreversible investment expenditure2. Information costs are used in the valuation of real 
options in Bellalah (2001, 2002).   
 
A.  The pricing of derivatives in the presence of information costs  
 
As in Bellalah (2001), let's denote by C the price of a derivative security on a stock 
With a continuous dividend yield δ. The underlying asset price dynamics are: 
 

dS = µSdt + σS dz 
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where the drift term μ and the volatility σ are constants and  dz  is a Wiener process.   
Using Ito's lemma, we have:  

 

dC= (
S
C
∂
∂  µS + 

2
1

²S
C²

∂
∂ σ² S²)dt + 

S
C
∂
∂ σSdz 

 
We construct a portfolio Π using a position in the derivative security and a 

number of units of the underlying asset Π = - C + 
S
C
∂
∂ S. The change in the portfolio 

value is ΔΠ= (-
S
C
∂
∂  µS - 

2
1

²S
C²

∂
∂ σ² S²) Δt. Over the same time interval, dividends are 

given by δS
S
C
∂
∂ Δt. Let us denote by ΔW the change in the wealth of the portfolio 

holder. We have  

ΔW= (-
t
C
∂
∂  -

2
1

²S
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∂
∂ σ² S² + δS

dS
C∂  )Δt 

  
The portfolio is instantaneously risk-less and must earn the risk-free rate plus 

information costs or  
 

(-
t
C
∂
∂  -

2
1

²S
C²

∂
∂ σ² S² + δS

dS
C∂  )Δt = - (r + λc)CΔt + (r + λs)S

dS
C∂  )Δt 

 
where λi refers to these costs. This gives 
 

t
C
∂
∂  + (r + λs – δ) S

S
C
∂
∂  Δt +

2
1

²S
C²

∂
∂ σ² S² = (r + λc)C 

 
Bellalah (1999) provides the following equation for the pricing of commodity 

options:  

2
1 σ² S² Css + ( b + λs) SCs – (r + λc)C + Ct = 0 

 
When the information costs λs and λc are set equal to zero, this equation collapses to 
that in Barone-Adesi and Whaley (1987). The term b indicates the cost of carrying the 
commodity. The value of  a European commodity call is: 
 

C(S,T) = Se((b-r- (λc – λs))T) N(d1) – Ke- (r + λc)T N(d2) 

with                                 d1 = [ln(
K
S ) + ( b + 

2
1 σ² + λs)T]/ σ T  

 
where N(.) is the cumulative normal density function.  
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When λs and λc are equal to zero and b = r, this formula is the same as that in 
Black and Scholes. A direct application of the approach in Barone-Adesi and Whaley 
(1987), allows writing down immediately the formulas for American commodity 
options with information costs. The following Tables provide simulations results 
regarding our model with incomplete information and the Black and Scholes model. 
Option values are compared for different levels of the underlying asset (from 70 to 120) 
and different information costs regarding the option and its underlying asset.  

 
 

Table 4 
Call options values using the following parameters: 

K =100, r=0.08, t=0.25, σ =0.2 
 

Black & 
Scholes 

Incomplete 
Information 

(λs, λc) 

  .01,.001 .01 , 0 .03,.001 .03 , 0 .2 ,.01 .2 ,0 
S:70 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
S:80 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
S:90 0.8972 0.9009 0.8949 0.8964 0.8904 0.8533. 0.8534 

S:100 5.0177 5.0202 5.6705 7.6257 4.9802 4.7872. 4.7730 
S:110 12.6520 12.6448 12.6204 12.5817 12.5574 12.058 12.034 
S:120 22.0877 22.0619 22.0326 21.9586 21.9227 21.038 21.010 

 
 

Table 5 
European Futures Call values using the following parameters: 

K =100, r=0.08, T=0.5, σ =0.4 
 

Complete Information Black’s model Incomplete Information model
Futures price Option price λc = 1% λc  = 5% 

F = 70 0.0000 0.0000 0.0000 
F = 80 2.6940 2.6806 2.6275 
F = 90 6.1331 6.1025 5.9817 

F = 100 10.8051 10.7512 10.5383 
F = 110 16.7917 16.7260 16.3772 
F = 120 19.9557 23.7260 23.3058 

 
 
 
B.  Investment timing, project valuation and the pricing of real assets with 

compound options within information uncertainty. 
 
The timing option gives the right to the manager to choose the most advantageous 
moment to implement the investment project and allows him to pull out of the project 
when the economic environment turns out to be unfavourable. Several standard models 
are proposed in the literature for the pricing of these options.   

Lee (1988) proposes a model for the valuation of the timing option arising from 
the uncertainty of the project value and for the detection of the optimal timing. He 
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considers three cases: the optimal timing of plant and equipment replacement, the real 
estate development and the marketing of a new product.   

The investment project is interpreted as the replacement of a capital asset, the 
inauguration of a new product and the development of real estate. The manager has the 
option to implement the project in the time interval [0, T] where T is the option's 
maturity. The possibility to implement an investment project in [0, T] can be seen as an 
American call option on a security with no dividend payments.   

Let us denote by:  
V : the present value of the project implemented,  
S : the present value of the project not yet implemented,  
I : the cost of the project,  
D : a known anticipated jump in the project's value,  
C(S,0, T, I): an American call without dividend where 0 refers to the starting 
time,  
c(S, 0, T, I) : a European call option,  
PTi(0, T) : the value of timing option.  
 
The value of PTi(0,T) corresponds to the difference between the value of the 

deferrable investment opportunity when the timing option is "alive" and when the 
timing option is "dead". The project's value if it is implemented now is: 

 
C(S, 0, 0, I) = Max [V - I, 0]  

 
where the NPV of the implemented investment opportunity is (V - I).  

In this case, the timing option value is given by: 
 

PTi(0,T) =  C(S,0,T,I)  - C(S,0,0,I) 
PTi(0, T)=  min[C(S,0,T,I), C(S,0,T,I) - (V - I)] ≥ 0 

 
This equation shows that it is profitable to implement the project now (V - I > 0 ) 

when the value of the timing option is equal to the value of the deferrable investment 
opportunity minus NPV.  

The cost of waiting D can be seen as a dividend in the pricing of American call 
options. It is possible to study three different specifications.   
 
Specification 1:  
 
(i)  The present value changes of the not-yet-implemented project is:  

 
dS/S = µdt +  σdz 

 
(ii)  If the project is implemented before t*, it generates an extra cash-flow at t*:  
 

Vt*= St* + D 
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This specification corresponds for example to the real estate development. In 
fact, leaving property vacant can be seen as holding a timing option on the real estate 
development. The cost of development is I.  
 
Specification 2: 
 
Same as (i) of specification 1. The cost of the project increases by D when implemented 
after t*: 
 
                                                   It* + h = I          for all h > 0 
                                                  Xt* - h = I – D   for h > 0 

 
It is possible to use the formula in Whaley (1981) to compute the value of the 

optimal timing option and the optimal timing of project implementation. It is possible to 
show that the value of an American call in the presence of a cash discrete dividend and 
information costs is given by: 

 

C = S[e((b-r-( λc – λs))t*) N(b1) + e((b-r-(λc – λs))t*) N2 (a1,-b1,- T
*t )] – I[e-(r+λc)t* N(b2)  

+ e-(r+λc)t* N2 (a2, -b2, - T
*t )] + De –(r+λc)t* N(b2). 

with :  

a1 = [ln(S/I) + (b+ 
2
1 σ² + λs )t* ]/ σ *t  

a2 = a1 - σ *t  

b1 = [ln(S/Scr,t*) + (b+ 
2
1 σ²  + λs )ti ]/ σ *t  

b2 = b1 - σ *t  
 
where Scr,t* corresponds to the trigger point present value, N(.) stands for the cumulative 
normal distribution and N2 (.,., ) is the bivariate cumulative normal density function 
with upper integral limits a and b and a correlation  coefficient ρ3.  
The “trigger point” for specification 1 is given by:  
 

PTi (t*, T) = c (Scr,t*,t*, T, I) – ( Scr,t* + D – I) = 0 
 
This case fits well with the replacement of plant and equipment. If we denote by 

S, I and T the present value, the cost of replacement and the remaining life, then a firm 
keeping the equipment in operation  will face expenditures at time t* of amount D. In 
this case, formula (3) can be applied to compute the value of the timing option and 
trigger point present value. These two specifications allow a single occurrence of 
discrete cash flow at time t*. It is possible to generalize the results using specification 
3.  
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Formula (3) is simulated in the following Tables 6, 7 and 8. The parameters are    
S = 175, D = 1.5, r = 0.1 and the constant "carrying cost" is 0.6. We use different values 
for the information costs λS and λC. The option has a maturity date of one month. The 
volatility is σ =0.32 and the "dividend" is paid in 24 days.  

Table 6 uses these parameters with no information costs. It gives the 
computation of the American call value referred to as Call, the option  ca, the option cb, 
the option cc, the algebraic sum of the three options (ca + cb - cc) and the critical 
underlying asset price. The results are given for different "strike prices" varying from 
100 to 240. Table 6 shows that the algebraic sum of the three options is equal to the 
American call price. The "critical asset price" corresponding to an early exercise is an 
increasing function of the strike price.  

Table 7 uses the same data except for information costs. Information costs are set 
equal to λs = 0.01 and λc = 0.001. The reader can check that the algebraic sum of the 
three options is exactly equal to the American call price. With these costs, the call price 
is slightly higher than in Table 6.   

Table 8 uses the same parameters except for the information costs which are set 
equal to λs = 0.1 and λc = 0.05.   

 
 
 

Table 6  
Simulations of option values for the continuous-time model using parameters: 

S = 175, r = 0,1, D = 1,5, T = 30, t = 24, σ = 0,32, λc = 0, λs= 0. 
 

Strike Call ca cb cc ca +cb -cc S* 
100 76.03 74.42 74.25 72.65 76.03 100.02 
105 71.06 69.46 69.11 67.51 71.06 105.00 
110 66.09 66.09 66.09 66.09 66.09 110.00 
115 61.13 61.13 61.13 61.13 61.13 115.00 
120 56.16 56.16 56.16 56.16 56.16 120.00 
125 51.19 51.19 51.19 51.19 51.19 125.00 
130 46.22 46.22 46.22 46.22 46.22 130.00 
135 36.30 36.30 36.30 36.30 36.30 135.00 
140 31.37 31.37 31.37 31.37 31.37 140.00 
145 26.50 26.50 26.50 26.50 26.50 145.00 
150 21.78 21.78 21.78 21.78 21.78 150.00 
155 17.31 17.31 17.31 17.31 17.31 154.00 
160 13.25 13.25 13.25 13.25 13.25 159.00 
165 9.72 9.72 9.72 9.72 9.72 164.00 
170 6.82 6.82 6.82 6.82 6.82 169.00 
175 4.56 4.27 2.52 2.52 2.23 179.00 
180 4.56 4.56 4.56 4.56 4.56 179.00 
185 2.91 2.74 1.41 1.24 2.91 184.00 
190 1.77 1.68 0.74 0.64 1.77 189.00 
195 1.03 0.98 0.36 0.31 1.03 194.00 
200 0.57 0.55 0.16 0.14 0.57 200.00 
240 0.00 0.00 0.00 0.00 0.00 240.00 
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Table 7 
Simulations of option values for the continuous-time model using parameters: 

   S = 175, r = 0, 1, D = 1,5, T = 30, t = 24, σ = 0,32, λc = 0,001, λs= 0,01.  
 

Strike Call ca cb cc ca +cb -cc S* 
100 76.03 74.42 74.25 72.65 76.03 100.02 
120 71.06 69.46 69.11 67.51 71.06 105.00 
140 66.09 66.09 66.09 66.09 66.09 110.00 
145 31.37 31.37 31.37 31.37 31.37 140.00 
150 61.13 61.13 61.13 61.13 61.13 115.00 
155 56.16 56.16 56.16 56.16 56.16 120.00 
160 51.19 51.19 51.19 51.19 51.19 125.00 
165 46.22 46.22 46.22 46.22 46.22 130.00 
170 36.30 36.30 36.30 36.30 36.30 135.00 
175 31.37 31.37 31.37 31.37 31.37 140.00 
180 26.50 26.50 26.50 26.50 26.50 145.00 
185 21.78 21.78 21.78 21.78 21.78 150.00 
190 17.31 17.31 17.31 17.31 17.31 154.00 
195 13.25 13.25 13.25 13.25 13.25 159.00 
200 9.72 9.72 9.72 9.72 9.72 164.00 
240 6.82 6.82 6.82 6.82 6.82 169.00 

 
 
 

Table 8 
Simulations of option values for the continuous-time model using parameters: 

S = 175, r = 0,1, D = 1,5, T = 30, t = 24, σ = 0,32, λc  = 0,05, λs = 0,1    
 

Strike Call ca cb cc ca +cb -cc S* 
100 76.03 75.55 74.25 73.58 76.92 100.02 
120 57.12 55.79 69.11 67.51 57.12 120.00 
140 37.32 36.06. 66.09 66.09 66.09 110.00 
145 32.40 31.37 31.37 31.37 31.37 140.00 
150 27.54 61.13 61.13 61.13 61.13 115.00 
155 22.80 21.71 18.55 56.16 56.16 120.00 
160 18.29 51.19 51.19 51.19 51.19 125.00 
165 14.15 46.22 46.22 46.22 46.22 130.00 
170 10.52 36.30 36.30 36.30 36.30 135.00 
175 7.49 31.37 31.37 31.37 31.37 140.00 
180 5.09 26.50 26.50 26.50 26.50 145.00 
185 3.31 21.78 21.78 21.78 21.78 150.00 
190 2.05 17.31 17.31 17.31 17.31 154.00 
195 1.22 13.25 13.25 13.25 1.22 194.00 
200 0.69 9.72 9.72 9.72 0.69. 200.00 
240 0.00 0.00 0.00 0.00 0.00 240.00 
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Specification 3:   
 
(i)  The present value of the implemented project V follows the equation:  
 

dV/V = µdt + σdz 
 
(ii)  If the project is not implemented immediately, its value will fall by a known 

amount Di at time ti where i = 1, 2, ..., n.  
(iii)  If the project is implemented at time tk, its present value is given by: 
  

Sk =   V0 - e∑
−

=

1k

1i
Di -(r+)ti, 0       ti < tk <tT 

 
In this expression, Sk corresponds to the present value at time 0 for the project to 

be implemented at tk. V0 corresponds to the present value of the project to be 
implemented now. The cost of waiting is given by the difference between the two 
present values. In this case, an extended version of the Black's (1976) approximation 
with information costs can be use: 

 
C(S, 0, T, I) = max[c(Sk, 0, tk, I) | k  =  1, 2,..., n] 

 
At each instant th , just before the known present value decline, Dh, it is Possible 

to compute the trigger point project value, Vcr,h as in Lee (1988) using the following 
equation : 

Sk =  Vcr,h – e∑
−

=

1k

1i
Di -(r+) (ti-th   k =  h, h+1,..., n 

c(Sk, th, tk*, I) = Vcr,h - I 
 
In this expression, tk*: the planned optimal timing when the manager decides to wait;   
Sk*: the present value at tk of the project when it is implemented at the optimal planned 
time. A firm has a timing option on the introduction of a product with a cost I for a time 
horizon T. If a new product is introduced at time 0, its present value V can be described 
by the above dynamics. Before a given firm introduces the product, the introduction by 
the competitor at time tk can reduce the value of a given firm new product by Dk.  

Each episode of innovation at time i can reduce the value of the new planned 
product line by Di. This fits with specification 3.    

 
III. VALUING FLEXIBILITY AS A COMPLEX OPTION WITHIN 

INFORMATION UNCERTAINTY 
 

Triantis and Hodder (1990) propose an approach for the valuation of flexible 
production systems using the option pricing theory. Their analysis concerns mainly the 
switching between different operating states in the lines of Majd and Pindyck (1987), 
McDonald and Siegel (1984, 1986), Pindyck (1988), Brennan and Schwartz (1985), etc. 
They propose a model for the pricing of complex options that appear in the valuation of 
a flexible production system. The system allows the manager to switch the output mix 
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over time. The model accounts for the fact that real assets markets are monopolistic or 
oligopolistic by allowing downward sloping demand curves for the underlying assets 4.  

Consider the decision to purchase a production facility that can be costlessly 
switched to produce some combinations of k products. The average variable cost of 
product i is Ci(t) and its sale price is Pi(t). Hence, the per unit profit is Ri(t) = Pi(t) - 
Ci(t). Using a production rate qi(t), the profit can be written as a linear function: 

 
Ri(t) = Ai- Bi(t) qi(t) 

 
where Bi is a positive constant and Ai satisfies the equation: 
 

dAi= αi dt + σidzi; Ai(0) = ai;   i=1,2,3...k 
 
where zi is the standard Brownian motion with ρi,j a correlation coefficient between the 
processes for products i and j. 

The life of the production system [0, T] is split up into N periods of equal 
duration τ. At each period, a production rate qi(τ) for the ith product during the period    
[nτ, (n+1)τ] is chosen to define the firm's manufacturing program.  

The cost of purchasing a system of capacity Q is I0(Q). A fixed cost CF(Q) per 
unit time is suffered regardless of whether the system is operating. It is assumed that 
portfolios of securities can be constructed and their price processes Mi are given by: 

 

i

i
M

dM = µMidt +σidzi,     i =1, 2, 3...k 

 
There exists also a riskless asset D such that dDt = r Dt dt where r is the riskless 

rate. The value of the option to produce in [nτ, (n+1)τ], expiring at time nτ is 
  

Wnτ (A1(t), ..., Ak(t),t) at t < nτ. 
 
The option value Wnτ satisfies the following partial differential equation: 
 

∑ ∑ σσρ
= =

k

1i

K

1j
jiij2

1 Wnτ  + δ∑ −
=

k

1i
r( i)Wi

nτ   - rWnτ  + Wt
nτ  = 0 

 
where δi = µMi - σi for i = 1 to k and the subscripts on Wnr refer to partial derivatives. 
The terminal boundary condition for the option value is: 
 

Wnr (A1……Ak, nr) =  ∑ ββ−η+β
=

k

1i
iiiii )qA(q

where 

β =
r

)e1( -nt−
,   ]e[

r
r rri

i
−τ−β

δ−
=η ,   i=1,2,3...k 
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In order to obtain the maxi mum values functions of Ai, for i = 1, ...,k, the 
following quadratic programming problem gives the optimal production levels  qi*: 

 

max qi    ∑ β−η+β
=

k

1i
iiiii )qBA(q

subject to 
qi  ≥ 0,  i=1,2,3...k 

∑
=

k

1i i

i
y
q  - Q = 0 

 
Denoting by Гi the Lagrange multipliers, the optimal production quantities are 
determined using the following Kuhn-Tucker conditions: 
 

−β−η+β *qB2A iiii Гi + y
1k +Γ  

 
The complementary slackness conditions are: 
 

Гi qi = 0;  i=1,2,3...k 

0Q
y
q1

k

i i

i
k =⎥

⎦

⎤
⎢
⎣

⎡
∑ −+Γ 5

 
To determine the option value Wnr (a1, a2, 0), Triantis and Hodder(1990) use the 

Harrison and Kreps (1979) approach and denote by f*(A1, A2) the transformed 
probability density over which the expected terminal value of the option is calculated. 
The transformed bivariate density has means 

 
nr)r(a iii δ−+=μ  and variances σ²inr for i = 1,2. 

   
The boundaries of the areas in the regions I to VII are defined in terms of the 

following coefficients: 
 

21

14
38

5

7
756

5

71
5

3

42
4

1

21
3

2
2

1
1

yK
yKVV,

K
KV,K

6
KV

K
KQyv,

K
KQyv,

K
KQyv,v,v

−=
−

==

−
=

−
=

−
=

β
η−

=
β
η−

=
 

 
Let Zi(Ai, q*i) = q*i )i*qBA( iii β−η+β with  i = 1, 2. The expression of the expected 
terminal value of the production option is given by: 
      
E*{Wnr(A1,A2,nτ)} = 

+∫ ∫+∫ ∫ ∞ ∞
+∞−

∞ )IV(ddA)A,A(*f)Qy,A(Z)IV(ddA)A,A(*f)Qy,A(Z 212112v 2A6V5v 1121211
2v

3v 11  
 



www.manaraa.com

INTERNATIONAL JOURNAL OF BUSINESS, 12(2), 2007                                                    283 

)VI(ddA)A,A(*f)]KAK,A(Z)KAK,A(Z 2121423222112v
A6V7v

112 ++++∫ ∫∞ +
∞− + 

+
+−

−+−∫ ∫∞ +
∞− )VII(ddA)A,A(*f

1y
KAKAK

Qy,A(Z)KAKAK,A(Z 2121
72615

222726152v
A6V7v

112  

)VII(dAdA)A,A(*f
Y

KAKAK
Qy,A(Z)KAKAK,A(Z 21214v

AVV
AVV

1

72615
2227261511265

267
∫ ∫

⎩
⎨
⎧ +−

−+−∞ +
+

 

 
The net present value of manufacturing products is the sum of the present values 

for current and future production less the discounted stream of fixed costs and the initial 
outlay. It is given by: 

 
V (a1, a2, 0) = W0 (a1, a2, 0) +  - ∑

−

=

1N

1n
21 )0,a,a((Wnr )()1)((

0 QI
r

eQCF rT

−
− −

 

 
Where W0 (a1, a2, 0) = Z1 (a1, q*(0)) + Z2 (a2, q*2(0)) corresponds to the value of 
producing the first period. 

Triantis and Hodder (1990) give an example to illustrate the above methodology. 
They calculate the NPV of manufacturing two products and specify the values of δi and 
µMi for each product. They use the CAPM to determine the µMi. It is possible to 
extend all their results in the presence of information costs by applying the CAPMI of 
Merton (1987) instead of the standard CAPM in the determination of the term µMi. A 
similar analysis can then be used in the presence of information costs.  

 
IV. THE VALUATION OF REAL OPTIONS WITHIN INFORMATION 

COSTS IN A DISCRETE-TIME SETTING. 
 
The majority of the papers concerned with the pricing of real assets in a discrete time 
setting derive from the models for financial options pioneered by Cox, Ross and 
Rubinstein (1979).   
 
A The valuation of real assets in a simple discrete-time framework  
Salkin (1991) extends the basic binomial option pricing methodology to derive a 
consistent technique for the pricing of real hydrocarbon reserves. We extend this 
analysis to account for the effect of information costs.   

In the classic binomial model of Cox, Ross and Rubinstein (1979), the price of 
the underlying asset goes up (u) or down (d) with a probability p and (1 -p). The use of 
this model is based on the presence of a "twin security" which exactly mimics the 
structure of the project. Consider an investor who can either trade a commodity or 
invest in a project which supplies the commodity. The use of the dynamics of prices of 
the commodity must provide a good foundation for the examination of the structure of 
the cash flows of the project.   

By introducing information costs, the probability of an upward movement in the 
underlying asset price can be shown to be equal to: 

 

p = 
du

dcr
−
−λ−  
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The price uncertainty is described by a lattice:  Si,t =  S0,0µidi-t   

Where S0, 0 is the price of the underlying commodity.  
Let us denote Pt : the production of a commodity at time t; Ft : the fixed costs of 

production at time t; Vt : the variable costs of production per unit of commodity at time    
t; and τ : corporation tax rate on positive cash flows at time t.  

These profiles can be used to construct gross revenue, net revenue and post-tax 
cash flows. Using a lattice of post-tax cash flows, it is possible to calculate the 
Expected NPV of the project (ENPV). The lattice gross revenue Gi,t corresponds to the 
spot lattice Si,t  times the production profile Pt for all time and states t.   

 
Gi,t =  Si,t Pt

 
The net revenue lattice Ni,t pre-taxation corresponds to the gross revenue less the 

cost profiles Ft  and Vt: 
 

Ni,t = Gi,t - Ft - Pt Vt
 
The application of a taxation rate to all positive cash flows, gives a lattice that 

describes the cash flows of the project: 
  

Фi,t = Ni,t ≥ 0, Ni,t (1- r ) 
                                                         Фi,t = Ni,t < 0, Nit

 
The resulting lattice describes the post tax cash flows of the project. The added 

value to the project resulting from the ability to implement any decision contingent on 
the cash flows, Фi,t.  

In general, a decision rule is used to decide on the abandonment of a project, the 
contraction of its scale, the expansion of its scale, or capacity, etc. For example, the 
decision to abandon is taken when both the post tax cash flows in the current period are 
negative and the expected future post cash flows from the current time t and state i is 
negative.  

The expected value of all future post tax cash flows from current time t can be 
calculated by beginning at the end for T = N. If we denote by ψi,t  the expected value of 
all future post tax cash flows for the current time t and state i, then: 

 
ψi,t = [   )]  1t,)(p-(1  )1t,  1t,(p

cR
1

1t,ii1iti +++ φ++ψ++φ++ψ
λ+

 

 
where R refers to one plus the riskless rate of interest. 

Now, it is possible to get a structure of cash flows that accounts for the 
abandonment decision: Πi,t = Max[Фi,t; ψi,t ]. 

Repeating this procedure for all states at each period gives the project's value Пi 
with the embedded option to abandon the production. The process by which Пi 0, 0 is 
calculated is denoted by: 

 
Π  = Fn (Pt, Ft, Vt, τ, σ, λs, λc, S0, 0) 
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B.  The generalization of discrete time models  
 
Trigeorgis (1991) proposed a Log-transformed binomial model for the pricing of 
several complex investment opportunities with embedded real options. The model can 
be extended to account for information costs.  The value of the expected cash flows or 
the underlying asset V satisfies the following dynamics: 
 

dzdt
V

dV
σ+α=  

 
Consider the variable X = log V and K = σ²dt. If we divide the project's life T   

into N discrete intervals of length τ, then K can be approximated from σ² 
N
T  .   

 Within each interval, X moves up by an amount ΔX = H with probability (1 – 
Π) or down by the same amount ΔX = -H with probability (1 - Π). The mean of the 

process is E(dX) = µK; and its variance is Var(dX)= K with µ = 
2
1

²
)sr(
−

σ
λ+ .  

The mean and the variance of the discrete process are:  
  

E(ΔX) = 2 ΠH - H    and    Var(ΔX) = H² - [E(Δ X)]². 
  
The discrete time process is consistent with the continuous diffusion process 

when 2π H -H = µ K, with µ = 
2
1

²
)sr(
−

σ
λ+  so )

H
K1(

2
1 μ

+=π  and )²K(²H μ−  so that 

)².K(KH μ+=  
The model can be implemented in four steps. In the first step, the cash flows    

CF are specified. In the second step, the model determines the following key variables: 
the time-step:   

K from
N

T²σ , 

The drift µ from
5.0²
)sr(

−σ
λ+ ,   

The state-step H from )².K(K μ+           

And the probability Π from )
H
K1(

2
1 μ

+ .   

Let “j” be the integer of time steps (each of length K), i the integer index for the 
state variable X (for the net number of ups less downs). Let R(i) be the total investment 
opportunity value (the project plus its embedded options). In the third step, for each 
state i, the project's values are V(i) = e(X0 + i H)   . 

The total investment opportunity values are given by the terminal condition 
   

R(i) = max[V(i), 0]   . 
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The fourth step follows an iterative procedure. Between two periods, the value of 
the opportunity in the earlier period j at state i, R'(i) is given by: 

 

R'(i)= e-(r+λc)( )
²

K(
σ  [π R(i +1) +  (1- π) R(i-1)] 

 
In this setting, the values of the different real options can be calculated by 

specifying their payoffs. The payoff of the option to switch or abandon for salvage 
value S is R'= max(R,S). The payoff of the option to expand by e by investing an 
amount I4 is R'= R+ max (eV - I4,0). The payoff of the option to contract the project 
scale by c saving an amount I3 is R'= R + max(I’3- cV,0). The payoff of the option to 
abandon by defaulting on investment I2 is:  R'= max(R -I2, 0). The payoff of the option 
to defer (until next period) is R'= max (e-(r + λc)T E(Rj+1), Rj). When a real option is 
encountered in the backward procedure, then the total opportunity value is revised to 
reflect the asymmetry introduced by that flexibility or real option. This general 
procedure can be applied for the valuation of several projects and firms in the presence 
of information costs.   

 
V. SUMMARY 

 
This paper develops some results regarding the valuation of the firm and its real options 
in the presence of information uncertainty. We propose some simple models for the 
analysis of the investment decision under  

Uncertainty and sunk costs. First, we use Merton (1987) model of capital market 
equilibrium with incomplete information to determine the appropriate rate for the 
discounting of risky cash flows under incomplete information. This allows the 
extension of the EVA concept under incomplete information.  

Second, we study potential applications of option pricing theory in continuous 
time for the valuation of simple and complex real options.  

Third, we extend the standard analysis for the valuation of flexibility as a 
complex option within information uncertainty.  

Fourth, a general context is proposed for the valuation of real options and the 
pricing of real assets in a discrete-time setting. Salkin (1991) shows how to apply the 
Cox, Ross and Rubinstein (1979) model for the valuation of complex capital budgeting 
decisions. The methodology is applied to a hypothetical case of a marginal natural 
resource project. The real benefit of this technique arises in its ability to value more 
realistically situations in which traditional techniques attributed little or no worth. 
Following the analysis in Salkin (1991), we develop a simple context for the valuation 
of real options using option pricing techniques in the presence of information Costs. 
Then, using the Trigeorgis (1991) general Log-transformed binomial model for the 
pricing of complex investment opportunities, we provide a context for the valuation of 
these options under incomplete information. It is possible to use the main results in 
exotic options to value different real options. However, it is important to note that real 
options can be sometimes more difficult to value in the presence of information costs 
and a dependency between different real options in the same project.   
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ENDNOTES 
 

1. For a survey of important results in the standard literature, the reader can refer to 
Brealey and Myers (1985) and Bellalah (1998). For the valuation in the presence of 
information costs, we can refer to Bellalah (2001, 2002). 

2. These models undermine the theoretical foundation of standard neoclassical 
investment models and invalidate the net present value criteria in investment 
choice under uncertainty.  For a survey of this literature, the reader can refer to 
Pindyck (1991), Trigeorgis (1993 a, b, c 1996), Dixit (1995), Luehrman (1997, 
1998) and the references in that paper. 

3. The formula can be derived using a similar context as that in Roll (1977), Geske 
(1979), Whaley (1981) and Bellalah (1999). The valuation by duplication 
technique can be implemented. Consider the following portfolio of options: 
a/ the purchase of a European call ca having a strike price I and a maturity date T, 
b/ the purchase of a European call cb with a strike price Scr,t* and a maturity date t*, 
c/ the sale of  a European call option c on the option defined in a/ with a strike 
price ( Scr,t* + D - I ) and a maturity date (t* - ε). 
The contingent payoff of this portfolio of options is identical to that of an 
American call. In a perfect market, the absence of costless arbitrage opportunities 
ensures that the American call value is identical to that of this portfolio. The 
American call value must be equal to the sum of the three options in the portfolio. 
The option ca, can be valued using an extension of the Merton's (1973) commodity 
option formula or the model in Bellalah (1999). The option cb can be priced using 
Bellalah (1999) for µla for which the strike price is Scr,t*. The option cc can be 
priced using an extension of the compound option for µla proposed in Geske 
(1979). Since the value of the American call is equivalent to the algebraic sum of 
the three options in the portfolio, we have: C = ca + cb – cc.  

4. The uses of such curves appear alo in Pindyck (1988) and He and Pindyck (1989). 
5. The solutions to the two last equations for two products involve seven types of 

feasable solutions. The seven regions denoted by Roman numerals and optimal 
production quantities for the (n+1)th period are: 
I:  0*q,0*q;0,0,0 21321 ===Γ≠Γ≠Γ   

II: Г1=0, Г2 ≠ 0, Г3 = 0; q1* = K1A1 +K2, q*2 = 0  

III: Г1≠ 0, Г2 =0, Г3 = 0; q1* =0, q*2 = K3A2 +K4

IV: Г1= 0, Г2 ≠0, Г3 = 0; q1* =Qy1, q2, q*2 = 0 

V: Г1 ≠ 0, Г2= 0, Г3 ≠ 0; q*1 = 0, q2* =Qy1,q2

VI: Г1=0, Г2 = 0, Г3 ≠ 0; q1* = K1A1 +K2, q*2 = K3A2 + K4

VII: Г1=0, Г2 = 0, Г3 ≠ 0; q1* = K5A1 – K6,A2 + K7,q*2 = y2 [Q - ]
y
q

1

1  

where:  

⎥
⎦

⎤
⎢
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